Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation

نویسندگان

  • Morten S Dueholm
  • Mads T Søndergaard
  • Martin Nilsson
  • Gunna Christiansen
  • Allan Stensballe
  • Michael T Overgaard
  • Michael Givskov
  • Tim Tolker-Nielsen
  • Daniel E Otzen
  • Per H Nielsen
چکیده

The fap operon, encoding functional amyloids in Pseudomonas (Fap), is present in most pseudomonads, but so far the expression and importance for biofilm formation has only been investigated for P. fluorescens strain UK4. In this study, we demonstrate the capacity of P. aeruginosa PAO1, P. fluorescens Pf-5, and P. putida F1 to express Fap fibrils, and investigated the effect of Fap expression on aggregation and biofilm formation. The fap operon in all three Pseudomonas species conferred the ability to express Fap fibrils as shown using a recombinant approach. This Fap overexpression consistently resulted in highly aggregative phenotypes and in increased biofilm formation. Detailed biophysical investigations of purified fibrils confirmed FapC as the main fibril monomer and supported the role of FapB as a minor, nucleating constituent as also indicated by bioinformatic analysis. Bioinformatics analysis suggested FapF and FapD as a potential β-barrel membrane pore and protease, respectively. Manipulation of the fap operon showed that FapA affects monomer composition of the final amyloid fibril, and that FapB is an amyloid protein, probably a nucleator for FapC polymerization. Our study highlights the fap operon as a molecular machine for functional amyloid formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli

Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods:  The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...

متن کامل

In vitro activity of Quercus brantii extracts against biofilm- producing Pseudomonas aeruginosa

Background: Biofilm formation by Pseudomonas aeruginosa is a serious concern in treatment of diseases and medical industries. Natural products that originate in plants can influence microbial biofilm formation. The effect of ethyl acetate, methanol and water- methanol extracts of Quercus brantii on biofilm formation and biofilm disruption of P. aeruginosa were investigated in this study. Methods...

متن کامل

Quantification of biofilm structures by the novel computer program COMSTAT.

The structural organization of four microbial communities was analysed by a novel computer program, COMSTAT, which comprises ten features for quantifying three-dimensional biofilm image stacks. Monospecies biofilms of each of the four bacteria, Pseudomonas: putida, P. aureofaciens, P. fluorescens and P. aeruginosa, tagged with the green fluorescent protein (GFP) were grown in flow chambers with...

متن کامل

Do Not Fear Commitment: The Initial Transition to a Surface Lifestyle by Pseudomonads

This chapter aims to describe the early stages of biofilm formation, particularly on abiotic surfaces, by focusing on Pseudomonas aeruginosa. Specifically, we will dissect the early steps in the establishment of a multicellular community: (i) translocation to the surface from a free-swimming planktonic lifestyle, (ii) initial or reversible attachment, and finally (iii) irreversible attachment. ...

متن کامل

Effects of carbazole-degradative plasmid pCAR1 on biofilm morphology in Pseudomonas putida KT2440.

Bacteria typically form biofilms under natural conditions. To elucidate the effect of the carriage of carbazole-degradative plasmid pCAR1 on biofilm formation by host bacteria, we compared the biofilm morphology, using confocal laser scanning microscopy, of three pCAR1-free and pCAR1-carrying Pseudomonas hosts: P. putida KT2440, P. aeruginosa PAO1 and P. fluorescens Pf0-1. Although pCAR1 did no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013